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BACKGROUND Premature ventricular complexes (PVCs) are prevalent and, although often benign, they may lead to

PVC-induced cardiomyopathy. We created a deep-learning algorithm to predict left ventricular ejection fraction (LVEF)

reduction in patients with PVCs from a 12-lead electrocardiogram (ECG).

OBJECTIVES This study aims to assess a deep-learning model to predict cardiomyopathy among patients with PVCs.

METHODS We used electronic medical records from 5 hospitals and identified ECGs from adults with documented PVCs.

Internal training and testing were performed at one hospital. External validation was performed with the others. The

primary outcome was first diagnosis of LVEF#40% within 6 months. The dataset included 383,514 ECGs, of which 14,241

remained for analysis. We analyzed area under the receiver operating curves and explainability plots for representative

patients, algorithm prediction, PVC burden, and demographics in a multivariable Cox model to assess independent

predictors for cardiomyopathy.

RESULTS Among the 14,241-patient cohort (age 67.6 � 14.8 years; female 43.8%; White 29.5%, Black 8.6%, Hispanic

6.5%, Asian 2.2%), 22.9% experienced reductions in LVEF to #40% within 6 months. The model predicted reductions in

LVEF to #40% with area under the receiver operating curve of 0.79 (95% CI: 0.77-0.81). The gradient weighted class

activation map explainability framework highlighted the sinus rhythm QRS complex-ST segment. In patients who un-

derwent successful PVC ablation there was a post-ablation improvement in LVEF with resolution of cardiomyopathy in

most (89%) patients.

CONCLUSIONS Deep-learning on the 12-lead ECG alone can accurately predict new-onset cardiomyopathy in patients

with PVCs independent of PVC burden. Model prediction performed well across sex and race, relying on the QRS

complex/ST-segment in sinus rhythm, not PVC morphology. (J Am Coll Cardiol EP 2023;9:1437–1451) © 2023 by the
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P remature ventricular complexes
(PVCs) are early depolarizations of
the ventricular myocardium and are

prevalent in 1% to 4% of the general adult
population on 12-lead electrocardiography
(ECG) and 40% to 75% on Holter moni-
toring.1,2 Although initially considered
benign, the 1990s saw the advent of our un-
derstanding of the concept of PVC-induced
cardiomyopathy (PVC-CM)—in which pa-
tients with idiopathic cardiomyopathy saw
improvements in the left ventricular ejection
fraction (LVEF) with pharmacologic suppres-
sion of PVCs.3 Catheter ablation has also been suc-
cessful in restoring ventricular function upon
elimination of the PVCs.4

Numerous studies have revealed that the PVC
burden correlates modestly with the extent of left
E 1 Consort Diagram

electrocardiogram; LVEF ¼ left ventricular ejection fraction; MI ¼
transthoracic echocardiogram.
ventricular dysfunction in attempts to risk-stratify
which patients are likely to progress to PVC-CM.5-7

In patients with a high PVC burden referred for
ablation, the prevalence of PVC-CM is approximately
33%, with the lowest PVC burden resulting in PVC-CM
being 10%.7 However, some patients with a high PVC
burden do not experience a drop in ejection fraction
(EF) whereas others with a low burden progress to
PVC-CM.4,8,9 Historically, decisions to augment
medical therapy or refer patients for catheter ablation
are based on symptoms, PVC burden, and whether
there is a reduction in LVEF.7,10 In patients with a
cardiomyopathy attributed to PVCs, 82% of patients
undergoing catheter ablation procedures showed
normalization of the LVEF within 6 months.11 There is
a dearth of clinical tools available to risk-stratify
which patients are likely to experience a reduction
in ventricular function in the presence of PVCs.12
myocardial infarction; PVC ¼ premature ventricular contraction;



TABLE 1 Patient Demographics (Testing and Validation)

Total Cohort
(N ¼ 14,241;
27,370 ECGs)

EF >40%
(n ¼ 11,292;
20,941 ECGs)

EF #40 %
(n ¼ 3,262;
6,429 ECGs)

Age, y 67.6 � 14.8 67.7 � 15.0 67.6 � 14.1

Male 56.2 52.7 68.2

Ethnicity

White 29.5 30.9 25.3

Black 8.6 8.4 8.8

Hispanic 6.5 6.2 7.7

Asian 2.2 2.2 1.9

Other/unknown 53.3 52.2 56.3

Values are mean � SD or %.

ECG ¼ electrocardiogram; EF ¼ ejection fraction.
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The ideal screening strategy would incorporate clin-
ical information that is readily acquired in routine
clinical practice.

Convolutional neural networks, which form the
architectural basis for deep learning, a subset of ma-
chine learning and artificial intelligence, have
frequently been used in image-based ECG analysis to
make predictions and identify important features,
which in turn have proven teachable to clinicians.13,14

Although deep learning has been used to approximate
the site of origin of PVCs based on the 12-lead ECG,
there is a scarcity of data on its use to risk-stratify
patients with PVCs who may stand to benefit from
medical intervention.5,15-17 Thus, there is a significant
opportunity to apply deep learning to help clinicians
identify which patients are at high risk of developing
PVC-CM, with the future potential to consider
changes in management based on the model predic-
tion. To this end, we studied the possibility of using a
deep learning algorithm to predict LVEF reduction in
patients with PVCs based solely on a 12-lead ECG—an
inexpensive, readily available, and frequently per-
formed test.
METHODS

DATA SOURCES. We used available ECG data from 5
hospitals within the Mount Sinai Health System.
These hospitals, namely, Mount Sinai Hospital,
Mount Sinai Morningside, Mount Sinai West, Mount
Sinai Beth Israel, and Mount Sinai Queens, serve a
large demographically and socioeconomically diverse
population in New York City. Data from the Mount
Sinai Hospital were used for model training and
testing, whereas pooled data from all other facilities
were used for external validation.

ECG data were extracted from the GE MUSE system
based on associated physician-confirmed diagnoses
of PVCs. Values of LVEF, clinical notes, and Interna-
tional Classification of Diseases-10th Revision (ICD-
10) codes were extracted from the electronic medical
record and associated with ECGs based on unique
patient identifiers. The institutional review board
provided approval and ethical oversight for the con-
duction of the study.

INCLUSION AND EXCLUSION CRITERIA. To be
included, patients 18 years of age and older had to
have serial ECGs of which at least 1 was required to
exhibit physician-confirmed PVCs, an initial echo-
cardiogram with a normal LVEF, and a follow-up
echocardiogram. The time from the first ECG to the
inclusion of the normal echo could not exceed
6 months. As patients had an ultimately normal
echocardiogram at the end of that time frame, the
LVEF was presumed normal for this time for predic-
tive modeling. ECGs with a paced rhythm and ven-
tricular tachycardia were excluded. Patients were
excluded if they had an ICD-10 code associated with
myocardial infarction or acute coronary syndrome at
any time, even if not initially present at time of the
initial echocardiogram.

PVC BURDEN AND ABLATION. To contextualize re-
sults, a manual review of patients who were flagged
as positive by the algorithm were assessed for coin-
cidental PVC ablation. A manual review was per-
formed of patient-level data including notes, scanned
monitor reports, the ablation procedural report, and
(if applicable) device interrogation data. Drs Joshua
Lampert and Vivek Reddy performed the manual re-
view. There was no disagreement in interpretation or
reporting of the outcomes data.

DATA PREPROCESSING. ECG data consists of XML
files containing waveform data for leads I, II, and V1-
V6. The remaining leads (III, aVF, aVL, and aVR) are
called “derived leads” in that they only contain in-
formation present within other leads. ECG waveforms
were subject to noise reduction by applying the But-
terworth Bandpass filter, followed by a median filter.
Resulting waveform data were plotted to images to
allow use of 2-dimensional convolutional neural
networks.

We created a rule-based natural language pro-
cessing pipeline to parse clinical notes for PVC
burden, which were obtained and calculated from
ambulatory patch monitors and Holter monitor re-
cordings. Regular expressions were created to extract
any numbers expressed as percentages based on
proximity to expressions of interest. Extracted values
were again paired to ECGs based on unique patient
identifiers.



FIGURE 2 Algorithm Performance

(A) Algorithm performance curves with ejection fraction (EF) cutoff #40%. (B) Algorithm performance EF <50%. AUPRC ¼ area under precision recall curve;

AUROC ¼ area under the receiver operating characteristic curve; EF ¼ ejection fraction; ROC ¼ receiver operating characteristic.

Continued on the next page

Lampert et al J A C C : C L I N I C A L E L E C T R O P H Y S I O L O G Y V O L . 9 , N O . 8 , 2 0 2 3

Deep Learning to Predict PVC Cardiomyopathy A U G U S T 2 0 2 3 : 1 4 3 7 – 1 4 5 1

1440
For patients with documented PVCs, we checked
for the first instance of low LVEF as defined by a
cutoff of either 40% or 50%. Patient data were
discarded following a diagnosis of low LVEF, if they
had an ICD-10–confirmed myocardial infarction, or
if the first recorded LVEF value was below the
cutoff.

DEFINITION OF PRIMARY OUTCOME. An ECG was
labeled as positive for the outcome in case a patient
with PVCs developed cardiomyopathy as defined by a
fall in the LVEF to below the cutoff within 6 months
of the date of the ECG. Because there are only 2
possible states for the outcome variable, the task may
be considered a binary classification problem.

MODEL DEVELOPMENT AND EVALUATION. We selected
the largest available pretrained ResNet model
(ResNet-152) as the starting point for our analyses.
Using models pretrained on natural images allows for
better performance with less data, while also
requiring less time to achieve an optimal solution.



FIGURE 2 Continued
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Data were split based on group shuffle splitting
which removes the potential for data leakage by
ensuring that no patients are present in both the
training and testing groups. We elected to use the
Adam optimizer with a learning rate of 3e-4 on a
OneCycle learning rate schedule. Models were trained
for 35 epochs, and performance reported on the epoch
with the best performance on internal testing data.
Resulting models were also separately evaluated on
external validation data. To avoid overfitting, we
used learning rate scheduling alongside continual
logging of loss and performance metrics to achieve
the best fit for the model. Training was ceased when
model performance started to deteriorate (overfitting
occurred) after initial improvement. The internal
cohort refers to the patients from Mount Sinai Hos-
pital whereas the external cohort were comprised of
the external validation dataset obtained from pooled
patients from the other 4 affiliated hospitals.

We used the area under the receiver operating
characteristic curve (AUROC), and area under the
precision recall curve (AUPRC) metrics to evaluate
model performance. These metrics use the uncali-
brated probability estimates output from the model to
generate curves which signify the model’s ability to
discriminate positives from negatives.

Calibrated Cox proportional hazard models were
generated for all patients with PVC burdens identified



FIGURE 3 Model Performance by Male or Female Sex

(A) Performance by sex with EF cutoff #40%. Red line denotes overall performance (AUROC). (B) Performance by sex with EF cutoff <50%. AUPRC ¼ area under the

precision recall curve; other abbreviation as in Figure 2.

Continued on the next page
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by natural language processing to assess model per-
formance in context of age, sex, and PVC burden as
covariates. For the purposes of these models, a posi-
tive model output (artificial intelligence–positive
[AIþ]) was defined as a $80% probabilistic model
output for developing a reduced ejection fraction
to <50% with 80% specificity. We performed cali-
bration using isotonic regression on the output of the
neural network .
EXPLAINABILITY. We used gradient-weighted class
activation mapping (GradCAM) methodology for
generating class activation maps. These maps show
which areas of the ECG are the most responsible for
pushing the model towards a prediction. To further
assess algorithm prediction, we extracted patients
for whom the model predicated subsequent LVEF
impairment with $80% probability with 80%
specificity who had ablation by checking for acute



FIGURE 3 Continued
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blood loss anemia as a wildcard. Then, a manual
chart review was performed by an electrophysiolo-
gist. We excluded patients if they did not have
follow-up echocardiographic data within 2 years of
ablation. We determined presence of PVCs at
follow-up by acquired ECGs, monitors, and device
interrogations including presenting electrograms.
We used a paired, 2-tailed Student’s t-test to assess
changes in EF in patients who underwent PVC
ablation.

SOFTWARE AND HARDWARE. We performed ana-
lyses using the numpy, pandas, scipy, scikit-learn,
PyTorch, and torchvision libraries inside a custom
virtual environment. We performed plotting using
the matplotlib and seaborn libraries. All code was
written for and within the Python programming lan-
guage (3.8.x).

CODE AVAILABILITY. The code will be made avail-
able upon publication.

RESULTS

STUDY POPULATION. The algorithm was trained and
tested using 13,553 patients with 25,995 ECGs from



FIGURE 4 Model Performance by Race

(A) Performance by race for EF cutoff #40%. (B) Performance by race for EF cutoff <50%. Red line denotes overall performance (AUROC). Abbreviations as in

Figures 1-3.
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one hospital (80% were used for training and 20% for
testing with group shuffle splitting), and externally
validated with pooled data from the other 4 hospitals
(n ¼ 688 and 1,375 ECGs) (Figure 1). Patient de-
mographics are summarized in Table 1. The mean age
was 67.6 � 14.8 years. Patient races included 29.5%
White, 8.6% Black, 6.5% Hispanic, 2.2% Asian, and
53.3% other or unknown race. The cohort was 56.2%
male.
The mean age of patients who experienced a
reduction in EF to #40% or <50% were 67.6, and 67.6
�14.7, respectively. The total prevalence of a follow-
up LVEF of #40% or <50% was 22.9% or 39%,
respectively. The prevalence of a reduced EF to #40%
was 19% in the internal cohort and 39% in the
external cohort. As expected, for a reduction to
LVEF <50%, the prevalence was higher in the internal
cohort (31%) and external cohorts (55%).



FIGURE 4 Continued
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MODEL PERFORMANCE: INTERNAL TESTING. The
model was trained on the 12-lead ECG to detect a
reduction in EF to #40% and <50% by echocardio-
gram at 6 months. Using a follow-up LVEF cutoff
of #40%, the model performed well with an AUROC
of 0.79 (95% CI: 0.77-0.81). The AUPRC was 0.50
(95% CI: 0.46-0.55) (Figure 1). As shown in Figure 2,
when an LVEF cutoff of <50% was used, the AUROC
and AUPRC were 0.77 (95% CI: 0.76-0.79) and 0.66
(95% CI: 0.63-0.69), respectively.

The AUROC curve was generated to assess model
performance across differences in patient sex and
ethnicity. When assessing an EF cutoff of #40%, the
AUROC as shown in Figure 3A was 0.81 (95% CI: 0.71-
0.79, AUPRC 0.63) in men and 0.75 in women (95% CI;
0.71-0.79, AUPRC 0.44). As shown in Figure 4A, the
AUROC was 0.80 (95% CI: 0.76-0.84) in White pa-
tients, 0.81 (95% CI: 0.74-0.88) in Black patients, 0.71
(95% CI: 0.62-0.79) in Hispanic patients, and 0.79
(95% CI: 0.64-0.93) in Asian patients. Comparable
performance was observed when assessing for an EF
cutoff of <50%: for sex, the AUROC was 0.77 (95% CI:
0.74-0.80, AUPRC 0.72) in men and 0.75 (95% CI :0.71-
0.79,AUPRC 0.55) in women (Figure 3B), and for
ethnicity—White, Black, Hispanic, and Asian—the
AUROCs were 0.72 (95% CI: 0.68-0.77), 0.72 (95% CI:



TABLE 2 Multivariable Cox Regression Model for the Outcome

of LVEF <50%

HR 95% CI P Value

Algorithm predicting
cardiomyopathy

333.6 122.3-909.8 <0.01

PVC burden 1.32 1.2-1.5 <0.01

Age 0.78 0.71-0.87 <0.01

Male 1.4 1.1-1.8 0.01

The algorithm covariate is a categorical variable with a positive algorithm pre-
diction of subsequent left ventricular ejection fraction (LVEF) impairment with
a$80% probabilistic output at 80% specificity. Premature ventricular contraction
(PVC) burden and age are continuous variables. Continuous variables were stan-
dardized using z-score standardization.

TABLE 3 Multivariable Cox Regression Model for the Outcome

of LVEF #40%

HR 95% CI P Value

Algorithm predicting
cardiomyopathy

304.1 77.2-1,197.5 <0.01

PVC burden 1.42 1.3-1.6 <0.01

Age 0.78 0.71-0.85 <0.01

Male 1.6 1.2-2.0 <0.01

The algorithm covariate is a categorical variable with a positive algorithm pre-
diction of subsequent LVEF impairment with a $80% probabilistic output at 80%
specificity. Premature ventricular contraction PVC burden and age are continuous
variables. Continuous variables were standardized using z-score standardization.

Abbreviations as in Table 2.
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0.64-0.80), 0.86 (95% CI: 0.79-0.92), and 0.77
(95% CI: 0.33-1.00), respectively (Figure 4B).

EXTERNAL VALIDATION. We additionally evaluated
algorithm performance in the pooled and aggregated
cohort from across the 4 external hospitals within the
health care system. The model performed well with
AUROC of 0.85 (95% CI: 0.83-0.87) and AUPRC of 0.82
(95% CI: 0.79-0.84) using an EF cutoff of #40%. The
model performed well in both male (AUROC 0.85,
95% CI: 0.83-0.88, AUPRC 0.88) and female (AUROC
0.84, 95% CI: 0.80-0.88, AUPRC 0.77) patients
(Figure 3A). Across races, the algorithm also
performed well. The AUROCs were 0.83 (95% CI: 0.79-
0.87), 0.82 (95% CI: 0.77-0.87), 0.95 (95% CI: 0.90-
0.99), and 0.82 (95% CI: 0.54-1.00), among White,
Black, Hispanic, and Asian patients, respectively
(Figure 4A).

When considering development of a reduced EF
to <50%, the AUROC was 0.83 (95% CI: 0.81-0.85) and
the AUPRC was 0.86 (95% CI: 0.84-0.89). Model per-
formance was comparable across men (AUROC 0.82,
95% CI: 0.79-0.85, AUPRC 0.90) and women (AUROC
0.81, 95% CI: 0.77-0.85, AUPRC 0.82) as shown in
Figure 3B. Likewise, the model performed well across
differences in race on external validation. The
AUROCs were 0.84 (95% CI: 0.80-0.87), 0.78 (95% CI:
0.73-0.84), 0.76 (95% CI: 0.67-0.84), and 0.83
(95% CI: 0.46-1.00) among White, Black, Hispanic,
and Asian patients, respectively (Figure 4B).

PVC BURDEN. Derived from the natural language
processing pipeline of patients with a positive algo-
rithm prediction (AIþ) and a PVC burden, 2,517 ECGs
remained for the calibrated model evaluating a cutoff
of LVEF #40% after 2,129 right-censored ECGs were
excluded. A total of 2,006 paired ECGs remained for
analysis with an LVEF cutoff of <50% after exclusion
of 1,700 right-censored ECGs paired to the outcome.
Positive algorithm prediction (AIþ) was a strong
negative independent prognostic factor. As shown in
Table 2, using an EF cutoff of <50%, a positive algo-
rithm prediction was associated with a more than
300-fold increased risk in subsequent LVEF impair-
ment (HR: 333.6; 95% CI: 122.3-909.82; P < 0.01). This
association was independent of PVC burden in the
Cox model, whereas PVC burden was also an inde-
pendent, albeit weaker, predictor of a reduction in EF
(HR: 1.32; 95% CI: 1.2-1.5; P ¼ 0.01). For an LVEF
cutoff of #40%, AIþ remained a strong independent
predictor of cardiomyopathy (HR: 304.1; 95% CI: 77.2-
1197.5; P < 0.01). Although AIþ portended vastly
increased likelihood of subsequent systolic functional
impairment independent of PVC burden, the actual
PVC burden (as a continuous variable) was also an
independent predictor of cardiomyopathy in this
group (HR: 1.42; 95% CI: 1.3-1.6; P < 0.01) (Table 3).
Model classification metrics are summarized in
Table 4. When assessing an EF cutoff of #40%, the
model had a sensitivity of 62% and specificity of 80%
with a positive predictive value (PPV) of 42% and
negative predictive value of 90% on internal testing.
The PPV was higher (69%) on external testing. Simi-
larly, the PPV was 55% on internal testing with an EF
cutoff of <50% but was 81% when model prediction
was applied to the external validation cohort. The
highest model sensitivity was observed in the
external cohort with an EF cutoff of #40% at 77%.

ASSESSMENT OF AID PATIENTS WHO UNDERWENT

PVC ABLATION. To determine whether the model
had identified patients where PVCs directly caused
cardiomyopathy, as opposed to an unrelated corre-
lation, we determined the effect of coincident PVC
ablation on outcomes by manual retrospective chart
review. Of the 286 AIþ patients who underwent any
ablation procedure, the procedure was performed to
target PVCs in 35 patients; among this subset, 15 pa-
tients also had subsequent follow-up echocardio-
graphic data for review.



TABLE 4 Model Classification Metrics

EF Cutoff Dataset Sensitivity Specificity PPV NPV

#40% Internal 0.62 0.80 0.42 0.90

#40% External 0.77 0.77 0.69 0.84

<50% Internal 0.56 0.80 0.55 0.81

<50% External 0.66 0.83 0.81 0.69

Internal dataset includes the internal testing cohort. External dataset includes the
external validation cohort. Model positivity was deemed positive at the respective
EF cutoff with $80% model probability prediction.

NPV ¼ negative predictive value; PPV ¼ positive predictive value; other
abbreviation as in Table 1.

TABLE 5 Impact of PVC Ablation in Retrospective Cohort

Pre-Ablation
LVEF, %

Post-Ablation
LVEF, % P Value

Full 32.9 45.9 <0.01

LVEF improvement 34.4 54.7 <0.01

No LVEF improvement 30.7 32.7 0.08

Improvement in LVEF post-ablation was defined by an increase in LVEF by $10%
or improvement to LVEF >50%.

Abbreviation as in Table 2.

J A C C : C L I N I C A L E L E C T R O P H Y S I O L O G Y V O L . 9 , N O . 8 , 2 0 2 3 Lampert et al
A U G U S T 2 0 2 3 : 1 4 3 7 – 1 4 5 1 Deep Learning to Predict PVC Cardiomyopathy

1447
Following the ablation procedure, 9 of 15 (60%)
patients had an improvement in EF after follow-up.
The LVEF improved from a mean of 34.4% to 54.7%
(Table 5), with 89% having a follow-up EF exceeding
50%. Of the 6 patients who did not show LVEF
improvement (pre- and post-LVEFs being 30.7% and
32.7%, respectively), all patients (100%) were found
to have recurrent PVCs at follow up—that is, unsuc-
cessful PVC ablation procedures.

EXPLAINABILITY FRAMEWORK. GradCAM was per-
formed to assess which features were important in
driving the model to an outcome prediction. Model
prediction focused primarily on lead II and lead I.
A heat map of feature importance is presented in
Figure 5 showing that the algorithm highlighted the
QRS complex and ST segment in sinus rhythm to be
the most important in predicting LVEF impairment.
PVCs were not highlighted. Additionally, QRS com-
plex and ST-segment during ectopy, such as prema-
ture atrial contractions as shown in Figure 5D, were
also not highlighted as important features.

DISCUSSION

This study presents a novel deep learning algorithm
based on the 12-lead ECG for predicting a reduction in
LVEF to #40% and <50% within 6 months in patients
with PVCs and without a history of myocardial
infarction. The most important findings of our study
are as follows: 1) the algorithm can accurately predict
cardiomyopathy within 6 months; 2) the algorithm
was accurate for either sex, and across a range of
ethnicities; 3) algorithm prediction is independent of
PVC burden; 4) the algorithm was a compelling and
independent predictor of a reduction in EF over a
finite, actionable clinical period; 5) the explainability
analysis highlighted the importance of the sinus beat
QRS complex and ST-segment, and not the PVC
morphology itself, suggesting that PVC origin is not
driving cardiomyopathy development and that model
prediction may be identifying vulnerable myocar-
dium at risk for decompensation when exposed to a
stressor such as PVCs; and 6) the LVEF improved in a
subset of patients who happened to undergo suc-
cessful PVC ablation procedures.

Perhaps the most intriguing observation in this
study is that positive algorithm prediction is not only
associated with vastly increased likelihood of subse-
quent left ventricular systolic function impairment,
but it is also independent of PVC burden. This sug-
gests that frequency of PVCs, a cornerstone metric of
current clinical decision making, is not the primary
driver of cardiomyopathy development in context of
algorithm prediction in this patient population.12

Another notable aspect of this study was the use of
explainable AI to highlight relevant portions of the
ECG.18 GradCAM is a technique that allows visuali-
zation of the feature(s) of the input data, in this case
the ECG waveform, that are most important in model
prediction. In our study, GradCAM highlighted the
QRS complex and ST-segment in sinus rhythm as the
most important features contributing to model pre-
diction, particularly in lead II (Figure 5). This finding
was somewhat unexpected given historical risk fac-
tors associated with PVC-CM including high PVC
burden (>10% to 15%), nonsustained ventricular
tachycardia, retrograde p-waves following the PVC,
QRS duration during PVC $140 milliseconds, PVC
morphology or origin, and PVC coupling interval or
interpolation.12,19-23

GradCAM attribution of feature importance, shown
in Figure 5, not only focuses on the sinus QRS com-
plex in our study, but also potentially builds on the
recent work by Alhede et al24 that showed mechani-
cally abnormal sinus beats, as defined by echocar-
diographic global longitudinal strain imaging, before,
during, and after PVCs. The mechanisms postulated
in that paper include abnormal autonomic inputs and
excitation-contraction coupling; however, no
discrete, single mechanism was implicated. The me-
chanically abnormal sinus beat presaging the PVC in
that paper is consistent with our explainability



FIGURE 5 GradCAM Attributions of Feature Importance

(A) Example of gradient-weighted class activation mapping (GradCAM) attribution of feature importance. Across patients, lead II was highlighted most frequently in

pushing the model towards a prediction. (B) Patient example with GradCAM highlighting sinus QRS and ST-segment as important features. (C) Patient example with

GradCAM highlighting sinus rhythm QRS complexes, focusing on lead II. PVCs are not highlighted despite 25% premature ventricular contraction (PVC) burden on this

recording. (D) Patient example with GradCAM highlighting sinus rhythm QRS complexes. The PVC is not highlighted.
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model—together suggesting that PVC morphology,
and therefore origin, is likely not the most important
feature mechanistically to explain the development
of a cardiomyopathy.

Likewise, our finding that the QRS complex in si-
nus rhythm is a predictive feature of subsequent
cardiomyopathy development in patients to the
exclusion of PVC morphology and coupling interval
challenges previous work highlighting the impor-
tance of metrics based solely on PVC parameters such
as duration and whether retrograde conduction was
present.12,19,20 Alternatively, the importance empha-
sized in our study of depolarization in sinus rhythm is
consistent with previous work implicating aberrant
excitation-contraction coupling, calcium metabolism,
and/or autonomic dysregulation in cardiomyopathy
development, although we cannot strongly implicate
a single mechanism.4,25-27

In our manual review of AIþ patient charts, 60% of
patients analyzed improved after PVC ablation and
89% of those patients experienced essentially full
recovery of systolic function, supporting that these
AIþ patients truly had a PVC-CM. Two findings from
this analysis are notable. First, all patients who did
not improve after ablation were noted to have PVCs at
follow-up. Second, there is a large discrepancy be-
tween the number of patients identified by the algo-
rithm as being at high risk for developing a
cardiomyopathy and the number who underwent
ablation for PVCs. The latter finding suggests signifi-
cant potential for the algorithm to meaningfully
identify patients at risk of developing cardiomyopa-
thy who may benefit from augmented care.

One finding in this analysis is that the area under
the curve (AUC) was higher in the external validation
cohort. There are several plausible explanations for
this. First, in context, the internal cohort was diverse
and model overfitting was unlikely to contribute to an
inappropriately high AUC in the cohort to which the
comparison is made. Second, the external validation
was performed with pooled data from 4 external
hospitals within the health system comprising
diverse patient populations with variable prevalence
of disease (which can also describe the increased
AUPRC). In this circumstance, 2 specific scenarios can
explain a higher AUC. The first is that the standard
deviation of model performance can vary when the
model is applied to the external cohort. However, a
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more likely contributor in these data could be a
function of increased separation in correlation vari-
ance of cases in the external cohort. For example, if
negative cases were deemed to be very clearly nega-
tive (highly negative correlation), and positive cases
were very positive (highly positive correlation) at
opposite ends of the AUROC curve, or with a higher
case mix variability, the resulting AUC would in-
crease. To phrase differently, the AUC can vary purely
as variance in correlation of cases (patients who
experience the outcome) even when correlation of
controls is fixed at different levels. This again fits
with differences in disease prevalence between the
cohorts as consistent patterns of AUC change are not
observed if the effect size is small. Lastly, in this
retrospective study, confounding could also
contribute to such variance.

Currently, this novel deep learning algorithm may
be clinically helpful via incorporation in shared
decision-making with patients with PVCs when dis-
cussing management options such as pursuing diag-
nostic imaging, medical therapy, or ablation in
appropriate patients.28,29 This is particularly
intriguing because the data was based on a single
12-lead ECG—a relatively ubiquitous test conducted in
most medical practices. However, caution is advised
particularly when considering invasive therapeutic
options based on this model prediction until pro-
spective studies confirm these results. Ultimately,
this algorithm shows promise for meaningful incor-
poration into clinical risk stratification given the
ubiquitous and inexpensive ECG basis for analysis.
STUDY LIMITATIONS. This retrospective study has
several limitations. First, although we excluded pa-
tients with a history of or acute myocardial infarction,
which should limit contribution of an ischemia to the
development of a cardiomyopathy, our methodology
has not completely excluded other potential etiol-
ogies such as tachycardia-induced cardiomyopathy,
stress-induced cardiomyopathy, or myocarditis.
Although such additional diagnoses could potentially
explain cardiomyopathy development were not
accounted for, the timeframe of a reduction in EF
within 6 months limits the differential and mitigates
confounding due to other diagnoses that could
explain reductions in EF. Likewise, the prevalence of
disease noted in our study is not consistent with re-
ported prevalence of these other diagnoses that could
result in a cardiomyopathy over a 6-month win-
dow.30-35 Furthermore, we relied on extracted XML



PERSPECTIVES

COMPETENCY IN PATIENT CARE AND

PROCEDURAL SKILLS: A novel deep learning al-

gorithm based solely on a 12-lead ECG can predict the

development of LVEF impairment in patients with

PVCs, and a GradCAM explainability framework sug-

gests that the most important feature contributing to

the model prediction is the sinus beat QRS complex

and ST-segment.

TRANSLATIONAL OUTLOOK: Further studies are

warranted to assess how the incorporation of a deep

learning algorithm into clinical practice to predict the

onset of cardiomyopathy in patients with PVCs may

impact clinical workflow, treatment decision-making,

and patient outcomes.
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files for screening ECG data which could have resul-
ted in some mislabeled ECGs. To mitigate this risk, we
manually reviewed representative sets of ECGs of
each diagnostic code to ensure we identified patients
with true PVCs. Likewise, although the manual elec-
trophysiologist review of patient-level data bolsters
data quality, the analysis is limited by the small
sample size. On the other hand, the systematic
fashion by which this analysis was performed miti-
gates the possibility of confounding issues. Lastly,
patients were analyzed retrospectively without stan-
dardized acquisition intervals between ECG and
echocardiography. A prospective cohort with stan-
dardized imaging intervals could better obviate se-
lection bias.

CONCLUSIONS

Deep learning applied to the 12-lead ECG in patients
with PVCs can predict a reduction in LVEF whether a
cutoff value of #40% or <50% is used in model pre-
diction. Algorithm prediction is associated with
vastly increased adjusted likelihood of subsequent
systolic dysfunction independent of PVC burden. The
algorithm performed well both on external validation
as well as across differences in sex and race. Whereas
the QRS complex in sinus rhythm appears to be
important in predicting a decrease in LVEF, PVC
morphology does not appear to be an important
feature driving model prediction, suggesting model
prediction may identify vulnerable myocardium at
higher risk for cardiomyopathy when exposed to a
stressor such as PVCs. Further studies should assess
whether incorporation of this algorithm into clinical
decision-making would change both quality metrics
and clinical outcomes.
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